Вероятность наступления события пример

Часть мозга, которая ответственна за оценку ситуации связана с медиаторной системой — центром мотивационных и эмоциональных процессов. Логика и эмоции часто конфликтуют между собой, поэтому решение принимается случайным образом.

Вероятность в независимых событиях

Классическое исследование на тему интуитивного знания провели Даниэль Канеман и Амос Тверский. Они дали задание группе студентов: на основании портрета, оценить утверждения с таблицы как более (1 балл) и менее (8 баллов) вероятные (таблица 3).

Почему интуитивное знание всегда противоречит статистике

По портрету логично предположить, что Линда участвует в феминистском движении. Но студенты принимали решения интуитивно, что привело к ошибке. Вероятность, что Линда работает в банке и принимает участие в феминистском движении больше вероятности работы в банке.

  • Достоверное событие. В исп. №2 событие «достать синий шар» достоверное, поскольку вероятность его появления равна 1, так как все шары синие и промаха быть не может. Тогда как событие «достать шар с цифрой 1» – случайное.
  • Невозможное событие. В исп. №1 с синими и красными шарами событие «достать фиолетовый шар» невозможное, поскольку вероятность его появления равна 0.
  • Равновозможные события. В исп. №1 события «достать шар с цифрой 2» и «достать шар с цифрой 3» равновозможные, а события «достать шар с четным числом» и «достать шар с цифрой 2» имеют разную вероятность.
  • Совместимые события. Два раза подряд получить шестерку в процессе бросания игральной кости – это совместимые события.
  • Несовместимые события. В том же исп. №1 события «достать красный шар» и «достать шар с нечетным числом» не могут быть совмещены в одном и том же опыте.
  • Противоположные события. Наиболее яркий пример этого – подбрасывание монет, когда вытягивание орла равносильно невытягиванию решки, а сумма их вероятностей – это всегда 1 (полная группа).
  • Зависимые события. Так, в исп. №1 можно задаться целью извлечь два раза подряд красный шар. Его извлечение или неизвлечение в первый раз влияет на вероятность извлечения во второй раз.

Отношения между событиями. Примеры

События считаются совместными, когда появление одного из них может совпасть с появлением другого. Несмотря на то что они совместные, рассматривается вероятность независимых событий. К примеру, бросание двух игральных костей может дать результат, когда на обеих из них выпадает цифра 6. Хотя события совпали и появились одновременно, они независимы друг от друга – могла выпасть всего одна шестерка, вторая кость на нее влияния не имеет.

Вероятность суммы совместных событий. Пример

  • достоверное событие гарантированно происходит в результате опыта Р(Ω) = 1;
  • невозможное событие никогда не может произойти Р(Ø) = 0;
  • случайное событие лежит между достоверным и невозможным, то есть вероятность его появления возможна, но не гарантирована (вероятность случайного события всегда в пределах 0≤Р(А)≤ 1).

Случайная величина — это величина, которая в результате испытания может принять то или иное значение, причем неизвестно заранее, какое именно. Случайные величины можно разделить на две категории:

Обратите внимание =>  Нужен ли отказ соседей при продаже комнаты

Основные понятия

Пример. Одного из трех стрелков вызывают на линию огня, он производит два выстрела. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,3, для второго — 0,5; для третьего — 0,8. Мишень не поражена. Найти вероятность того, что выстрелы произведены первым стрелком.

Формула полной вероятности и формула Байеса

  1. Возможны три гипотезы:
    • А1 — на линию огня вызван первый стрелок,
    • А2 — на линию огня вызван второй стрелок,
    • А3 — на линию огня вызван третий стрелок.

  2. Так как вызов на линию огня любого стрелка равно возможен, то
  3. В результате опыта наблюдалось событие В — после произведенных выстрелов мишень не поражена. Условные вероятности этого события при наших гипотезах равны:
  4. По формуле Байеса находим вероятность гипотезы А1 после опыта:

По результату видно: вероятность определенной последовательности каждый раз меньше на вероятность одного события. То есть вероятность определенной последовательности – произведение вероятностей каждого события. Если в одном событии вероятность 1/2, то в трех: 1/2*1/2*1/2=1/8.

Вероятность в независимых событиях

Портрет выглядел так: «Линда, возраст – немного за 30. Умная, говорит, что думает. В колледже изучала философию. Тогда же выступала против социального неравенства, дискриминации и использования ядерного оружия. Не замужем».

Почему интуитивное знание всегда противоречит статистике

Хороший пример принятия решений описан в книге Млодинова «(Не) совершенная случайность». Допустим, вы отправили рассказ в четыре издательства. От каждого получили отказ. На эмоциях вы придете к мысли: рассказ ужасный! Хотя, если изучить биографии популярных писателей, может оказаться, что дело не в вас. Отказы в публикации получали Стивен Кинг, Джоан Роулинг, Виктор Франкл. Такие истории случались вовсе не из-за отсутствия у них дара: просто в одном издательстве редактор не понял тонкую философию автора, в другом – спешил домой и проставил визу не читая.

  • алгебра событий — состоит из множества подмножеств, называемых событиями и их пространства;
  • существование возможности появления событий — каждому случаю приписывается в соответствие вещественная вероятность наступления;
  • нормировка — состояние, при котором вещественное число имеет вероятность свершения равное единице;
  • аддитивность — если 2 события не пересекаются, их вероятность находится суммированием.

Развитие науки

При рассмотрении свершения m событий в n экспериментах существует вероятность, заключённая в определённом отрезке между значениями a и b, поэтому выражение для нахождения можно найти из формулы: Р(m) = (n! * pm * qn-m) / m!(n-m)!. Уравнение требует сложных и громоздких расчётов, поэтому, чтобы найти вероятность, в математике из формулы используют асимптотическое распределение. Но возможно это только при условии, что Р(m) неизменное, а число экспериментов будет стремиться к бесконечности.

Теорема Муавра — Лапласа

В высшей математике существует раздел, изучающий статистику. По сути, это теоретическая база. Направление изучает закономерности и случайные явления, систематизирует данные для обоснования принятых решений. Основой науки является теория вероятности, чьи формулы используются для предположения о свершении того или иного события. Существует и алгоритм, с помощью которого решаются все задачи.

Пример 5. Три ящика содержат по 10 деталей. В первом ящике — 8 стандартных деталей, во втором — 7, в третьем — 9. Из каждого ящика наудачу вынимают по одной детали. Найти вероятность того, что все три вынутые детали окажутся стандартными.

События называются зависимыми , если одно из них влияет на вероятность появления другого. Например, две производственные установки связаны единым технологическим циклом. Тогда вероятность выхода из строя одной из них зависит от того, в каком состоянии находится другая. Вероятность одного события , вычисленная в предположении осуществления другого события , называется условной вероятностью события и обозначается .

Зависимые и независимые события. Условная вероятность

Теорема 2.4. Вероятность совместного появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило:

На экзамене у тебя не будут спрашивать теорию. Тебе нужно будет решать задачи на время. И, если ты не решал их (много!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь. Это как в спорте: нужно много раз повторить, чтобы выиграть наверняка. “Понял” и “Умею решать” – это совершенно разные навыки. Тебе нужны оба.

Алексей Шевчук
07 июля 2020
А с казино ситуация действительно очень похожая, за исключением одного маленького нюанса — сектора зеро. В рулетке 18 красных, 18 чёрных секторов, и один зеро — следовательно, вероятность выпадения красного не 1/2, а 18/37. Это нужно обязательно учитывать при расчёте вероятностей. Например, благодаря зеро не работает популярная когда-то стратегия: ставим рубль на красное, если он выпадает, забираем выигрыш, если нет, то удваиваем ставку. Теперь если выиграем, казино нам даст 2 рубля, что покроет предыдущий проигрыш и даст «заработок» в 1 рубль. Если снова не повезло — снова удваиваем ставку, таким образом, покрывая все прошлые проигрыши. Как только выиграли, возвращаемся к начальной ставке в 1 рубль. Весь расчёт здесь строится на том, что вероятность выиграть, умноженная на размер выигрыша, равна нашей ставке, поэтому мы как минимум ничего не теряем, а если вовремя остановиться, то и выигрываем. Но это не так (казино и рулетку не дураки придумали): именно благодаря зеро вероятность чуть меньше 1/2, но выигрыш всё равно в 2 раза больше ставки. Поэтому, играя много игр, мы проигрываем в среднем 1/37 поставленных денег — недостаточно много, чтобы мы что-то заподозрили, но достаточно, чтобы казино осталось в плюсе) Хорошо, что есть математика, и мы можем всё заранее расчитать, правда?

Задачи смешанного типа

Бросаем монетку \( 1\) раз. Какова вероятность того, что выпадет, например, орел? Правильно: \( \displaystyle \frac<1><2>\), ведь вариантов всего \( 2\) (либо орел, либо решка, пренебрежем вероятностью монетки встать на ребро), а устраивает нас только \( 1\).

Чтобы вспомнить о несовместных событиях и полной группе событий – см. §39 справочника для 9 класса.
Например:
При подбрасывании монеты события A=«получить орла» и B=«получить решку» — несовместные, т.к. одновременно произойти не могут.
В то же время, эти несовместные события A и B образуют пространство элементарных событий или полную группу \(\Omega=\left\\), т.к. ничего другого, кроме орла или решки, получить нельзя. Сумма вероятностей \(P(A)+P(B)=\frac12+\frac12=1\), как и положено для полной группы.

п.2. Вероятность совместного появления событий

Пример 2. В состязании лучников участвуют три стрелка. Вероятность попадания в мишень для каждого из них равна 0,3; 0,5 и 0,7. Один из стрелков стреляет и не попадает. Какова вероятность, что это был:
а) первый стрелок;
б) второй стрелок;
в) третий стрелок;

п.4. Формула Байеса

Пример 1. Двигатель работает в трех режимах: нормальном (65% времени), форсированном (25% времени) и холостом. Вероятность поломки в каждом из режимов соответственно равна \(p_1=0,1;\ p_2=0,8;\ p_3=0,05\).
а) найдите вероятность поломки двигателя во время работы;
б) двигатель сломался. Какова вероятность, что он в этот момент работал в форсированном режиме?

Если подбросить монету, то нельзя точно сказать, какой стороной она ляжет вверх – гербом или цифрой. Здесь результат действия – броска монеты – не определен однозначно. Может показаться, что в подобных задачах вообще ничего определенного сказать нельзя. Однако даже обычная игровая практика показывает обратное: при большом числе бросков примерно в половине случаев выпадет герб, а в половине – цифра. И это уже некоторая закономерность. Именно такие закономерности и изучаются в теории вероятностей.

Однако на практике часто встречаются испытания, число возможных исходов которых очень велико. Например, без многократного подбрасывания монеты трудно определить, равновозможны ли ее падения на «орёл» или на «решка». Поэтому используется и статистическое определение вероятности. Статистической вероятностью называют число, около которого колеблется относительная частота события ( W ( A ) – отношение числа испытаний М, в которых это событие произошло, к числу всех проведенных испытаний N ) при большом числе испытаний.

где М ≤ N

Данное определение принято называть классическим определением вероятности . Оно применяется, когда теоретически удается выявить все равновозможные исходы испытания и определить благоприятствующие исследуемому испытанию исходы.

Не всегда подсчет числа исходов является столь простым. В ряде случаев необходимо использовать формулы комбинаторики. При этом наиболее важным является подсчет числа событий, удовлетворяющих определенным условиям. Иногда такого рода подсчеты могут становиться самостоятельными заданиями.

Пример задачи из ЕГЭ по математике по определению вероятности

Если же события взаимны, они влияют друг на друга. В этом случае используется их перемножение: P(AB) = P(A) *PB (А). Например, в пачке 26 лотерей, из которых 3 призовых. Нужно определить шанс, что первый билет будет призовой и вероятность, что второй билет также будет с выигрышем, но при условии, что первый билет уже убрали.

Теорема Муавра — Лапласа

В XIX веке русские и европейские учёные смогли доказать сделанные ранее предложения. В первую очередь это касалось закона больших чисел и центральной предельной теоремы. Формальная система для описания теории была принята в 1933 году.